

RAID4S: Improving RAID Performance with Solid State Drives

Rosie Wacha

UCSC: Scott Brandt and Carlos Maltzahn LANL: John Bent, James Nunez, and Meghan Wingate

SRL/ISSDM Symposium October 19, 2010

RAID: Redundant Array of Independent Disks

- RAID0: striped
- RAIDI: mirroring
- RAID4: dedicated parity
- RAID5: distributed parity
- RAID6: two parities

RAID: Redundant Array of Independent Disks

- RAID0: striped
- RAIDI: mirroring
- RAID4: dedicated parity
- RAID5: distributed parity
- RAID6: two parities

Flash SSDs Replacing Disks

- Laptops
- Sensor networks
- Satellites
- Data centers (EuroSys '09)
 - Not cost-effective to replace hard drives
 - Caching tier only cost-effective for 10% of workloads

Our Solution: Replace Some Disks with Flash

- Flash SSDs are
 - available
 - fast
 - expensive
- RAID 4 + SSD = **RAID4S**

Large, Sequential Writes (RAID4&5)

Large, Sequential Writes (RAID4&5)

- N write requests → N+1 writes to disk
 - N data writes and I parity write

- I write → 2 reads + 2 writes
- Other solutions avoid small writes
 - Coalesce, log, NVRAM
- For remaining small writes
 - Use solid state drives!
 - Faster, lower power, but more expensive

- I write → 2 reads + 2 writes
- Other solutions avoid small writes
 - Coalesce, log, NVRAM
- For remaining small writes
 - Use solid state drives!
 - Faster, lower power, but more expensive

- I write → 2 reads + 2 writes
- Other solutions avoid small writes
 - Coalesce, log, NVRAM
- For remaining small writes
 - Use solid state drives!
 - Faster, lower power, but more expensive

- I write → 2 reads + 2 writes
- Other solutions avoid small writes
 - Coalesce, log, NVRAM
- For remaining small writes
 - Use solid state drives!
 - Faster, lower power, but more expensive

- I write → 2 reads + 2 writes
- Other solutions avoid small writes
 - Coalesce, log, NVRAM
- For remaining small writes
 - Use solid state drives!
 - Faster, lower power, but more expensive

- I write → 2 reads + 2 writes
- Other solutions avoid small writes
 - Coalesce, log, NVRAM
- For remaining small writes
 - Use solid state drives!
 - Faster, lower power, but more expensive

RAID4S Solves Small Write Problem

RAID4S Solves Small Write Problem

RAID5 parallelizes some small writes

RAID4S Solves Small Write Problem

RAID5 parallelizes some small writes

RAID4S parallelizes N=4 small writes

Experimental Setup

- Hardware experiment using Linux RAID software mdadm
- Intel X25-E 64GB
- 5 Western Digital Caviar Black 640GB 7200 RPM 32MB Cache SATA 3.0Gb/s 3.5"
- 4+1 arrays
 - RAID4
 - RAID4S
 - RAID4STUPID
 - RAID5
 - RAID5S

Performance is Equal for Sequential Write

- Ran dd to write files
 - IMB IO size
 - 4GB total IO
- Same performance
 - Large writes fill stripes
 - No small write problem

Random Writes Setup

- XDD 6.5 benchmark
 - 100% random write
 - Repeat 3 times and plot average
- Two different IO sizes:
 - 4KB to IGB (powers of 2); IGB total
 - IKB to I6KB (every one); 256MB total

RAID4S 1.6X Faster Than RAID5

RAID4S 1.6X Faster Than RAID5

64KB and lower

• 64KB and lower

• 64KB and lower

$$P = P' \oplus D_{l}' \oplus D_{l}$$

64KB and lower

$$P = P' \oplus D_{l}' \oplus D_{l}$$

64KB and lower

$$P = P' \oplus D_{l}' \oplus D_{l}$$

$$P = D_1 \oplus D_2 \oplus D_3 \oplus D_N'$$

$$P = D_1 \oplus D_2 \oplus D_3 \oplus D_N'$$

$$P = D_1 \oplus D_2 \oplus D_3 \oplus D_N'$$

4KB-Unaligned Writes

4KB-Unaligned Writes

Conclusions and Future Work

- RAID4S speeds up small writes
 - 3.3X over RAID4
 - I.6X over RAID5
- Status/Future
 - Experiments driven by I/O workload traces;
 mixed benchmarks
 - Verification of results with tracing

Questions?

rwacha@cs.ucsc.edu

SSD Reliability

- 64GB Intel SSD 2PB random write lifetime
- RAID4S
 - 100MB/s constant writes: lifetime is 7.7 months
 - 25MB/s: 30.7 months or 2.5 years